Error estimates for Krylov subspace approximations of matrix exponentials
نویسندگان
چکیده
منابع مشابه
Error Bounds for the Krylov Subspace Methods for Computations of Matrix Exponentials
In this paper, we present new a posteriori and a priori error bounds for the Krylov subspace methods for computing e−τAv for a given τ > 0 and v ∈ Cn, where A is a large sparse nonHermitian matrix. The a priori error bounds relate the convergence to λmin( A+A∗ 2 ), λmax( A+A∗ 2 ) (the smallest and the largest eigenvalue of the Hermitian part of A), and |λmax(A−A 2 )| (the largest eigenvalue in ...
متن کاملComparing Leja and Krylov Approximations of Large Scale Matrix Exponentials
We have implemented a numerical code (ReLPM, Real Leja Points Method) for polynomial interpolation of the matrix exponential propagators exp (∆tA)v and φ(∆tA)v, φ(z) = (exp (z) − 1)/z. The ReLPM code is tested and compared with Krylov-based routines, on large scale sparse matrices arising from the spatial discretization of 2D and 3D advection-diffusion equations.
متن کاملAnalysis of Some Krylov Subspace Approximations to the Matrix Exponential Operator
In this note we present a theoretical analysis of some Krylov subspace approximations to the matrix exponential operation exp(A)v and establish a priori and a posteriori error estimates. Several such approximations are considered. The main idea of these techniques is to approximately project the exponential operator onto a small Krylov subspace and carry out the resulting small exponential matr...
متن کاملSharp Ritz Value Estimates for Restarted Krylov Subspace Iterations
Gradient iterations for the Rayleigh quotient are elemental methods for computing the smallest eigenvalues of a pair of symmetric and positive definite matrices. A considerable convergence acceleration can be achieved by preconditioning and by computing Rayleigh-Ritz approximations from subspaces of increasing dimensions. An example of the resulting Krylov subspace eigensolvers is the generaliz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 1996
ISSN: 0377-0427
DOI: 10.1016/0377-0427(96)00006-4